Overview of nab-paclitaxel in Breast Cancer

William J. Gradishar MD FASCO FACP
Betsy Bramsen Professor of Breast Oncology
Robert H. Lurie Comprehensive Cancer Center
Northwestern University Feinberg School of Medicine

Madrid 2.2016
CHEMOTHERAPY REGIMENS FOR RECURRENT OR METASTATIC BREAST CANCER

Preferred single agents:
- Anthracyclines
 - Doxorubicin
 - Pegylated liposomal doxorubicin
- Taxanes
 - Paclitaxel
- Anti-metabolites
 - Capecitabine
 - Gemcitabine
- Other microtubule inhibitors
 - Vinorelbine
 - Eribulin

Other single agents:
- Cyclophosphamide
- Carboplatin
- Docetaxel
- Albumin-bound paclitaxel
- Cisplatin
- Epirubicin
- Ixabepilone

Chemotherapy combinations:
- CAF/FAC (cyclophosphamide/doxorubicin/fluorouracil)
- FEC (fluorouracil/epirubicin/cyclophosphamide)
- AC (doxorubicin/cyclophosphamide)
- EC (epirubicin/cyclophosphamide)
- CMF (cyclophosphamide/methotrexate/fluorouracil)
- Docetaxel/capecitabine
- GT (gemcitabine/paclitaxel)
- Gemcitabine/carboplatin
- Paclitaxel/bevacizumab

© 2016 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.
A concise story of nab-paclitaxel and breast cancer
Conventional taxanes, a mainstay of metastatic breast cancer treatment, balance efficacy with hypersensitivity / adverse events

Efficacy

- Increased systemic drug exposure
- Decreased drug clearance
- Nonlinear pharmacokinetics
- Lack of dose-dependent antitumor activity

Toxicity

- Hypersensitivity reactions are common
- Can sometimes lead to irreversible peripheral neuropathy associated with demyelination and axonal degeneration

Conventional Taxanes lack significant efficacy in patients with aggressive disease (e.g. HER2-negative patients)
CA012: nab-Paclitaxel Compared With Cremophor® EL Paclitaxel in Metastatic Breast Cancer Study Design and Objectives

- **Women ≥ 18 years with measurable MBC**
- **No prior taxane for metastatic disease**
- **ECOG PS 0-2**
- **Patients stratified for prior anthracycline exposure** (N = 460)

- **nab-Paclitaxel 260 mg/m²**
 - IV over 30 minutes q3w
 - No standard premedication

- **Cremophor EL Paclitaxel 175 mg/m²**
 - IV over 3 hours q3w
 - Standard premedication with dexamethasone and antihistamines

- **Primary endpoint:** ORR by RECIST
- **Secondary endpoints:** TTP, OS
- **Safety and efficacy based on ITT population:** 454 patients (229 nab-paclitaxel and 225 CrEL paclitaxel) who received ≥ 1 dose of study drug

CrEL, Cremophor EL; ECOG PS, Eastern Cooperative Oncology Group performance status; ITT, intent-to-treat; IV, intravenous; MBC, metastatic breast cancer; ORR, overall response rate; OS, overall survival; q3w, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; TTP, time to tumor progression.

CA012: *nab*-Paclitaxel Compared With Cremophor® EL Paclitaxel in Metastatic Breast Cancer

Results:

Time to Tumor Progression for All Patients

- *nab*-Paclitaxel is associated with a significantly longer time to progression than Cremophor EL paclitaxel

\[
P = 0.006
\text{HR} = 0.75
\]

Note: *P* value from log-rank test

CA012: nab-Paclitaxel Compared With Cremophor® EL Paclitaxel in Metastatic Breast Cancer Results: Overall Survival in the ITT Population

- The difference in OS in the ITT population for nab-paclitaxel and Cremophor EL paclitaxel was not statistically significant.

HR, hazard ratio; OS, overall survival.

CA012: nab-Paclitaxel Compared With Cremophor® EL Paclitaxel in Metastatic Breast Cancer Treatment Exposure

<table>
<thead>
<tr>
<th>Treatment Exposure</th>
<th>Cremophor® EL Paclitaxel Injection 175 mg/m² Over 3 h (n = 225)</th>
<th>nab-Paclitaxel 260 mg/m² Over 30 min (n = 229)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median cycles/patient</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Min, max cycles/patients</td>
<td>1, 18</td>
<td>1, 18</td>
</tr>
<tr>
<td>Mean dose intensity mg/m²/week</td>
<td>57.02</td>
<td>85.13</td>
</tr>
<tr>
<td>Mean total paclitaxel/patient/m²</td>
<td>909 mg</td>
<td>1459 mg</td>
</tr>
<tr>
<td>Patients with ≥ 1 dose delay, n (%)</td>
<td>53 (24)</td>
<td>41 (18)</td>
</tr>
</tbody>
</table>

Data on File. Celgene Corporation.
CA012: nab-Paclitaxel Compared With Cremophor® EL Paclitaxel in Metastatic Breast Cancer Safety: Sensory Neuropathy

- nab-Paclitaxel median time to improvement from grade 3 to a lesser grade: 22 days (95% CI: 17-22 days)

- Twenty-four patients (10%) in the nab-paclitaxel arm developed grade 3 sensory neuropathy compared with 5 patients (2%) in the Cremophor EL paclitaxel arm ($P < 0.001$)

CI, confidence interval.
CA024: Phase II Trial of First-Line nab-Paclitaxel vs Docetaxel in Metastatic Breast Cancer

Study Design and Objectives

- Women with pathologically confirmed MBC
- No previous chemotherapy treatment for MBC
- No parenchymal brain metastasis
- ECOG PS 0 - 2
- No grade > 1 baseline sensory neuropathy
- No concurrent immunotherapy or hormonal therapy for breast cancer

• Primary endpoint: investigator-assessed ORR (CR + PR) by RECIST
• Secondary endpoints: DCR (CR + PR + SD ≥ 16 weeks), PFS, DOR, OS, safety, tolerability

Arm A^a: nab-Paclitaxel 300 mg/m² q3w
 n = 76

Arm B: nab-Paclitaxel 100 mg/m² qw 3/4
 n = 76

Arm C^a: nab-Paclitaxel 150 mg/m² qw 3/4
 n = 74

Arm D^a: Docetaxel 100 mg/m² q3w^b
 n = 74

^a Administered at the maximum tolerated dose.
^b Patients treated with docetaxel received oral corticosteroid premedication.

CR, complete response; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Group performance status; MBC, metastatic breast cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; qw 3/4, first 3 of 4 weeks; q3w, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

CA024: Phase II Trial of First-Line nab-Paclitaxel vs Docetaxel in Metastatic Breast Cancer

Results: Overall Response Rate

For overall comparisons, $P = .224$ for independent radiologist-assessed ORR and $< .001$ for investigator-assessed ORR.

ORR, overall response rate; q3w, every 3 week; qw 3/4, first 3 of 4 weeks.

CA024: Phase II Trial of First-Line nab-Paclitaxel vs Docetaxel in Metastatic Breast Cancer

Results: Overall Survival

- The 150 mg/m² qw 3/4 nab-paclitaxel arm resulted in the longest median OS compared with the other nab-paclitaxel regimens or docetaxel

q3w, every 3 weeks; qw 3/4, first 3 of 4 weeks.

CA024: Phase II Trial of First-Line nab-Paclitaxel vs Docetaxel in Metastatic Breast Cancer
Treatment Exposure

<table>
<thead>
<tr>
<th>Dose Intensity</th>
<th>nab-Paclitaxel</th>
<th>Docetaxel</th>
<th>Overall P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mg/m² q3w (n = 76)</td>
<td>100</td>
<td>101</td>
<td>NA</td>
</tr>
<tr>
<td>100 mg/m² qw 3/4 (n = 76)</td>
<td>75</td>
<td>33</td>
<td>< .001<sup>a</sup></td>
</tr>
<tr>
<td>150 mg/m² qw 3/4 (n = 74)</td>
<td>101</td>
<td>25</td>
<td>34 (43)</td>
</tr>
<tr>
<td>100 mg/m² q3w (n = 74)</td>
<td>33</td>
<td>25</td>
<td>22 (30)</td>
</tr>
</tbody>
</table>

- Based on the Fisher exact test.
- One dose reduction per patient was allowed.
- Based on Kruskal-Wallis test.
- Based on investigator assessment of patients who exhibited a confirmed response.

<table>
<thead>
<tr>
<th></th>
<th>300 mg/m² q3w (n = 76)</th>
<th>100 mg/m² qw 3/4 (n = 76)</th>
<th>150 mg/m² qw 3/4 (n = 74)</th>
<th>100 mg/m² q3w (n = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥ 1 dose delay, n (%)</td>
<td>33 (43)</td>
<td>34 (45)</td>
<td>60 (81)</td>
<td>25 (34)</td>
</tr>
<tr>
<td>Patients with 1 dose reduction, n (%)</td>
<td>15 (20)</td>
<td>14 (18)</td>
<td>35 (47)</td>
<td>22 (30)</td>
</tr>
<tr>
<td>Cycle of dose reduction, median (range)</td>
<td>7 (2-13)</td>
<td>5 (2-13)</td>
<td>4 (1-19)</td>
<td>3 (2-13)</td>
</tr>
<tr>
<td>Cycle at best response, median (range)</td>
<td>4 (3-21)</td>
<td>2 (2-8)</td>
<td>2 (2-15)</td>
<td>5 (2-18)</td>
</tr>
<tr>
<td>Duration of treatment in weeks, median (range)</td>
<td>22 (< 1-125)</td>
<td>30 (2-123)</td>
<td>38 (2-107)</td>
<td>21 (1-109)</td>
</tr>
<tr>
<td>Cycles administered, median (range)</td>
<td>8 (1-39)</td>
<td>8 (1-30)</td>
<td>10 (1-27)</td>
<td>8 (1-37)</td>
</tr>
</tbody>
</table>

Selected Adverse Events

<table>
<thead>
<tr>
<th>Selected Adverse Events</th>
<th>nab-Paclitaxel</th>
<th>Docetaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 mg/m² q3w (n = 76)</td>
<td>100 mg/m² qw 3/4 (n = 76)</td>
</tr>
<tr>
<td>Neutropenia, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>28 (37)</td>
<td>15 (20)</td>
</tr>
<tr>
<td>Grade 4<sup>a</sup></td>
<td>5 (7)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Nadir neutrophil count, mean ± SD, × 10⁹/L</td>
<td>1.21 ± 1.00</td>
<td>1.51 ± 0.96</td>
</tr>
<tr>
<td>Sensory neuropathy, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>16 (21)</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Grade 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>4 (5)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time to onset of sensory neuropathy in days, median</td>
<td>151</td>
<td>189</td>
</tr>
<tr>
<td>Time to improvement of sensory neuropathy in days, median<sup>b</sup></td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: febrile neutropenia occurred in 8% of patients in the docetaxel arm vs 1% in each nab-paclitaxel arm.

^a For grade 4 neutropenia, \(P < .001 \) for all 3 nab-paclitaxel arms compared with docetaxel arm.

^b To grade ≤ 2.

q3w, every 3 weeks; qw 3/4, first 3 of 4 weeks; SD, standard deviation.

CALGB 40502: sb-Paclitaxel, nab-Paclitaxel, orIxabepilone, Each ± Bev for First-Line MBC

Study Design and Objectives1,2

- Primary endpoint: PFS1,2
- Secondary endpoints: ORR, DoR, TTF, rate of patients progression free at 12 months, OS, toxicity2

Measurable MBC; No prior chemotherapy for metastatic disease; ≥ 12 months from adjuvant taxanes; adequate organ function; ECOG PS 0 or 1
(N = 799)

\begin{itemize}
\item sb-Paclitaxel 90 mg/m2 qw 3/4 ± bevacizumab 10 mg/kg q2w 28-day cycles (n = 283)
\item nab-Paclitaxel 150 mg/m2 qw 3/4 ± bevacizumab 10 mg/kg q2w 28-day cycles (n = 271)
\item Ixabepilone 16 mg/m2 qw 3/4 ± bevacizumab 10 mg/kg q2w 28-day cycles (n = 245)
\end{itemize}

Patients could discontinue chemotherapy and continue bevacizumab only after cycle 6 if stable or responding disease

Stratification factors1:
Prior adjuvant taxane use, hormone receptor status, treatment with Beva

aTreatment with Bev became a stratification factor after the protocol was modified to make Bev optional (see trial modification slide).

Bev, bevacizumab; CALGB, Cancer and Leukemia Group B; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; MBC, metastatic breast cancer; ORR, overall response rate; OS, overall survival; q2w, every 2 weeks; qw 3/4, first 3 of 4 weeks; sb, solvent-based; TTF, time to treatment failure.

Patient Characteristics

<table>
<thead>
<tr>
<th>Baseline Characteristic, %</th>
<th>sb-Paclitaxel 90 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 283)</th>
<th>nab-Paclitaxel 150 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 271)</th>
<th>Ixabepilone 16 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 245)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>6 57 36</td>
<td>8 54 38</td>
<td>7 57 35</td>
</tr>
<tr>
<td>< 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>78 15 7</td>
<td>79 17 3</td>
<td>84 11 5</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjuvant taxane</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

Bev, bevacizumab; CALGB, Cancer and Leukemia Group B; MBC, metastatic breast cancer; q2w, every 2 weeks; qw 3/4, first 3 of 4 weeks; sb, solvent-based.

Other Grade ≥ 3 Adverse Events

<table>
<thead>
<tr>
<th>Nonhematologic Grade ≥ 3 Adverse Events</th>
<th>sb-Paclitaxel 90 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 262)</th>
<th>nab-Paclitaxel 150 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 258)</th>
<th>Ixabepilone 16 mg/m² qw 3/4 ± Bevacizumab 10 mg/kg q2w (n = 237)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>P^a</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>7</td>
<td>17</td>
<td>.0004</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>18</td>
<td>47</td>
<td>.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>8</td>
<td>7</td>
<td>ns</td>
</tr>
<tr>
<td>Fatigue</td>
<td>9</td>
<td>16</td>
<td>.010</td>
</tr>
<tr>
<td>Pain</td>
<td>4</td>
<td>10</td>
<td>.010</td>
</tr>
<tr>
<td>Motor neuropathy</td>
<td>2</td>
<td>10</td>
<td>.0003</td>
</tr>
</tbody>
</table>

a P value vs paclitaxel ± bevacizumab.
Unplanned Subset Analysis of PFS
44% adjuvant taxanes, DFI > 1 year in 66%

ER+ Disease

Comparison HR P-value 95% CI

<table>
<thead>
<tr>
<th>Comparison</th>
<th>HR</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>nab vs. pac</td>
<td>1.38</td>
<td>0.0194</td>
<td>1.05 – 1.81</td>
</tr>
<tr>
<td>ixa vs. pac</td>
<td>1.60</td>
<td>0.0006</td>
<td>1.22 – 2.08</td>
</tr>
</tbody>
</table>

Triple Negative Disease

Comparison HR P-value 95% CI

<table>
<thead>
<tr>
<th>Comparison</th>
<th>HR</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>nab vs. pac</td>
<td>0.93</td>
<td>0.7354</td>
<td>0.62 – 1.40</td>
</tr>
<tr>
<td>ixa vs. pac</td>
<td>1.46</td>
<td>0.0647</td>
<td>0.98 – 2.18</td>
</tr>
</tbody>
</table>

28% of 799 ER/PR- = 225
Overall Survival (OS)

<table>
<thead>
<tr>
<th>Drug Combination</th>
<th>OS in Months, Median</th>
<th>HR</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sb-P ± Bevacizumab</td>
<td>26</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>nab-P ± Bevacizumab</td>
<td>27</td>
<td>1.02</td>
<td>0.75 - 1.38</td>
<td>.92</td>
</tr>
<tr>
<td>Ixa ± Bevacizumab</td>
<td>21</td>
<td>1.28</td>
<td>0.95 - 1.72</td>
<td>.10</td>
</tr>
</tbody>
</table>

Bev, bevacizumab; CALGB, Cancer and Leukemia Group B; HR, hazard ratio; Ixa, ixabepilone; MBC, metastatic breast cancer; nab-P, nab-paclitaxel; sb-P, solvent-based paclitaxel.

Toxicity

• Grade 3+ adverse events
 – Hematologic: nab/pac/ixa
 • 51% vs 21% and 12%
 – Non hematologic: nab/pac/ixa
 • 60% vs 44% and 56%

• Sensory neuropathy
 – Grade 3+: nab/pac/ixa
 • 25% vs 16% and 25%

• Other toxicities
 – More common in both experimental arms
Nab-paclitaxel

- Role in Neoadjuvant setting?
- TNBC subset?
pCR is a Surrogate for Survival

Cortazar et al. Lancet 2014
Carboplatin Improves pCR in TNBC

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Tumor Subtypes</th>
<th>Regimen (for TNBC)</th>
<th>Carboplatin dose/schedule</th>
<th>ypT0N0 rates TNBC</th>
</tr>
</thead>
</table>
| GeparSixto | 588 | 1. *HER2+ 2. TNBC (315) | a) Paclitaxel/doxil/bev
b) Paclitaxel/doxil/bev + Carbo | AUC 2→1.5, weekly | a)36.9%
b)53.2% |
| CALGB 40603 | 443 | 1. TNBC | a) Paclitaxel → ddAC +/- bev
b) Paclitaxel/Carbo → ddAC +/- bev | AUC6, q3wks during paclitaxel | a)41%
b)54% |
| ISPY2 | 72 | 1. HR+/HER2- 2. HR-/HER2- | a) Paclitaxel → ddAC
b) Paclitaxel → ddAC, Carbo/velaparib | AUC6, q3wks x4 cycles | a)26%
b)52% |
| Northwestern | 30 | 1. TNBC | a) Eribulin + carboplatin | AUC6, q3weks x4 cycles | a)45.8% |

* no benefit in HER2+

von Minckwitz Lancet Oncol 2014
Sikov JCO 2014
Rugol SABCS 2013
Giordano SABCS 2013
Paclitaxel 80 mg/m² wkly x 12
Bevacizumab 10 mg/kg q2wks x 9
Carboplatin AUC 6 q3wks x 4
Paclitaxel 80 mg/m² wkly x 12
Carboplatin AUC 6 q3wks x 4
Bevacizumab 10 mg/kg q2wks x 9
Paclitaxel 80 mg/m² wkly x 12
Menstrual hormone manipulation
Surgery &
XRT*
No Adjuvant Systemic Treatment Planned*
&Research biopsies if residual tumor
*MD discretion

Sikov SABCS 2015 (with permission)
This presentation is the intellectual property of the authors. Contact them at wsikov@wihri.org for permission to reprint and/or distribute.
CALGB 40603 – EFS by pCR Breast/Axilla

HR=0.30 (0.19-0.45), p=<0.0001

- non-pCR 3-yr=62%
- pCR 3-yr=86%

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>Years from Study Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>non-pCR</td>
<td>236</td>
</tr>
<tr>
<td>pCR</td>
<td>207</td>
</tr>
</tbody>
</table>
CALGB 40603 – EFS for carboplatin vs. not

HR=0.84 (0.58-1.22), p=0.36

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>No Cb</th>
<th>Cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>185</td>
<td>145</td>
</tr>
<tr>
<td>225</td>
<td>202</td>
<td>162</td>
</tr>
<tr>
<td>185</td>
<td>145</td>
<td>94</td>
</tr>
<tr>
<td>202</td>
<td>162</td>
<td>31</td>
</tr>
<tr>
<td>145</td>
<td>94</td>
<td>31</td>
</tr>
<tr>
<td>162</td>
<td>31</td>
<td>37</td>
</tr>
</tbody>
</table>

This presentation is the intellectual property of the authors. Contact them at wsikov@wihri.org for permission to reprint and/or distribute.
(GeparSixto) Design for Patients with TNBC

N=315 patients with centrally confirmed TNBC

cT2, cT3, or cT4a-d or cT1 and cN+ or pN_{SLN}+

Paclitaxel (P) 80 mg/m² q1w
Non-pegylated liposomal doxorubicin (M) 20 mg/m² q1w
Bevacizumab 15 mg/kg q3w

Carboplatin (Cb) q1w
Dose of AUC 2 was reduced to AUC 1.5 after enrolment of 330 patients

von Minckwitz SABCS 2015 (with permission)
pCR Rates by Subtype

ypT0 ypN0

HER2-pos. BC

- PM: N=136
- PMCb: N=137

OR 0.84; p=0.6

TNBC

- PM: N=157
- PMCb: N=158

OR 1.94; p=0.005

Test for interaction p=0.015

von Minckwitz SABCS 2015 (with permission)
DFS: Effect of Carboplatin in TNBC

3 yrs DFS 85.8%
3 yrs DFS 76.1%

Logrank p=0.0325
HR PMCb to PM = 0.56, 95% CI (0.33, 0.96), p=0.0350

von Minckwitz SABCS 2015 (with permission)
Carboplatin in Neoadjuvant Setting

<table>
<thead>
<tr>
<th></th>
<th>CALGB 40603</th>
<th>GeparSixto</th>
</tr>
</thead>
<tbody>
<tr>
<td># with TNBC</td>
<td>443</td>
<td>315</td>
</tr>
</tbody>
</table>
| Regimen | a)Paclitaxel → ddAC +/- bev
b)Paclitaxel/Carbo → ddAC +/- bev | a)Paclitaxel/doxil /bev
b)Paclitaxel/doxil /bev + Carbo |
| Carbo dosing | AUC6, q3wks during paclitaxel | AUC 2→1.5, weekly |
| pCR rate | a)41%
b)54% | a)36.9%
b)53.2% |
| 3 year DFS | 76% vs 71% (HR 0.84, 95%CI 0.58-1.22, p=0.36) | 85.8% vs 76.1% (HR 0.56, 95%CI 0.33-0.96, p=0.035) |

- Nonstandard US regimens
- Carbo dose density?
- Increased toxicity
- May affect completion of standard therapy
- Not ready for routine use
- Encourage clinical trial participation
GeparSepto nab®-Paclitaxel at a Dose of 125 mg/m² Weekly is Equally Efficacious but Less Toxic Than at 150 mg/m²—Results From the Neoadjuvant Randomized GeparSepto Study (GBG 69)

G Von Minckwitz, M Untch, C Jackisch, A Schneeweiss, B Conrad, B Aktas, C Denkert, H Eidtmann, H Wiebringhaus, S Kümmel, J Hilfrich, M Warm, S Paepke, M Just, C Hanusch, J Hackmann, JU Blohmer, M Clemens, SD Costa, B Gerber, V Nekljudova, S Loibl

nab® is a registered trademark of Celgene Corporation.

San Antonio Breast Cancer Symposium, December 9-13, 2014

Initial Study Design

N=1200

Core biopsy (before study entry)

Arm A
- Paclitaxel 80 mg/m² weekly
- nab-Paclitaxel 150 mg/m² weekly
- Epirubicin 90 mg/m²
- Cyclophosphamide 600 mg/m²

Arm B
- If HER2 positive: Trastuzumab
- If HR positive: Tamoxifen, Aromatase inhibitors acc. to AGO Guidelines

12 weeks

Core biopsy optional

Surgery

*Centrally confirmed:
- Subtypes HER 2/ HR
- Ki 67
- SPARC

If HER2 positive:
- Trastuzumab 8 mg/kg (loading dose) followed by 6 mg/kg
- Pertuzumab (absolute dose per application) 840 mg (loading dose) followed by 420 mg
GeparSepto: nab-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Background

- The GeparSepto study showed that nab-P increased the pCR rate compared with Pac as part of sequential taxane-epirubicin/cyclophosphamide neoadjuvant treatment in early breast cancer.

- After a safety analysis found higher rates of dose reductions and treatment discontinuations with nab-P compared with Pac, nab-P dose was reduced from 150 to 125 mg/m².
GeparSepto: nab-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Before Amendment</th>
<th>After Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>nab-P 150 mg/m² n = 229</td>
<td>Pac 80 mg/m² n = 226</td>
<td>nab-P 125 mg/m² n = 377</td>
</tr>
<tr>
<td>Age, median (range), years</td>
<td>49 (28 - 75)</td>
<td>48 (26 - 75)</td>
</tr>
<tr>
<td>cT1-3, n (valid %)</td>
<td>209 (91.7)</td>
<td>209 (92.9)</td>
</tr>
<tr>
<td>cN positive, n (valid %)</td>
<td>101 (45.5)</td>
<td>103 (46.2)</td>
</tr>
<tr>
<td>ER and/or PgR+, n (valid %)</td>
<td>144 (62.9)</td>
<td>146 (64.6)</td>
</tr>
<tr>
<td>HER2+, n (valid %)</td>
<td>56 (24.5)</td>
<td>54 (23.9)</td>
</tr>
<tr>
<td>Tumor grade G3, n (valid %)</td>
<td>123 (53.7)</td>
<td>127 (56.2)</td>
</tr>
<tr>
<td>Ductal/ductal-lobular invasive, n (valid %)</td>
<td>199 (86.9)</td>
<td>195 (86.3)</td>
</tr>
<tr>
<td>TNBC, n (valid %)</td>
<td>64 (27.9)</td>
<td>62 (27.4)</td>
</tr>
<tr>
<td>HER2−/HR+, n (valid %)</td>
<td>109 (47.6)</td>
<td>110 (48.7)</td>
</tr>
<tr>
<td>Ki-67 >20%, n (valid %)</td>
<td>139 (60.7)</td>
<td>136 (60.2)</td>
</tr>
<tr>
<td>SPARC+ (IRS 6-12), n (valid %)</td>
<td>42 (18.3)</td>
<td>40 (17.7)</td>
</tr>
</tbody>
</table>

GeparSepto: nab-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

pCR Rates According to nab-Paclitaxel Dose

- Differences in pCR rates between nab-P 125 mg/m² and Pac 80 mg/m² were greatest in the overall cohort and the TNBC subgroup.
GeparSepto: *nab*-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Hematologic Toxicities

<table>
<thead>
<tr>
<th>AE, n (valid %)</th>
<th>Grade</th>
<th>nab-P 150 mg/m² n = 220</th>
<th>nab-P 125 mg/m² n = 385</th>
<th>Pac 80 mg/m² n = 601*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>Any 3/4</td>
<td>206 (93.6) 5 (2.3)</td>
<td>354 (91.9) 8 (2.1)</td>
<td>528 (88.1) 4 (0.7)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>Any 3/4</td>
<td>209 (95.0) 110 (50.0)</td>
<td>358 (93.0) 170 (44.2)</td>
<td>550 (91.8) 271 (45.2)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Any 3/4</td>
<td>197 (50.0) 140 (63.9)</td>
<td>334 (86.8) 228 (59.2)</td>
<td>487 (81.3) 371 (61.9)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Any 3/4</td>
<td>51 (23.2) 2 (0.9)</td>
<td>93 (24.2) 3 (0.8)</td>
<td>145 (24.2) 3 (0.5)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>3/4</td>
<td>10 (4.5)</td>
<td>18 (4.7)</td>
<td>24 (4.0)</td>
</tr>
</tbody>
</table>

* For safety analysis, patients were grouped according to their dose on day 1
GeparSepto: *nab*-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Nonhematologic Toxicities

<table>
<thead>
<tr>
<th>AE, n (valid %)</th>
<th>Grade</th>
<th>nab-P 150 mg/m² n = 220</th>
<th>nab-P 125 mg/m² n = 385</th>
<th>Pac 80 mg/m² n = 601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any nonhematologic AE</td>
<td>Any 3/4</td>
<td>220 (100.0)</td>
<td>385 (100.0)</td>
<td>600 (99.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>188 (85.5)</td>
<td>306 (79.5)</td>
<td>458 (76.2)</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy</td>
<td>Any 3/4</td>
<td>194 (88.2)</td>
<td>320 (83.1)</td>
<td>392 (65.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 (14.5)</td>
<td>32 (8.1)</td>
<td>16 (2.7)</td>
</tr>
<tr>
<td>Hand-foot syndrome</td>
<td>Any 3/4</td>
<td>54 (24.5)</td>
<td>117 (30.4)</td>
<td>107 (17.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (1.4)</td>
<td>10 (2.6)</td>
<td>6 (1.0)</td>
</tr>
</tbody>
</table>

* For safety analysis, patients were grouped according to their dose on day 1

GeparSepto: *nab*-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Taxane Treatment Exposure

<table>
<thead>
<tr>
<th></th>
<th>nab-P 150 mg/m²</th>
<th>nab-P 125 mg/m²</th>
<th>Pac 80 mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuation, %</td>
<td>26.8</td>
<td>16.6</td>
<td>13.3</td>
</tr>
<tr>
<td>Relative total dose intensity,^a^ median (range), %</td>
<td>108 (10 - 123)</td>
<td>99 (17 - 104)</td>
<td>100 (0 - 136)</td>
</tr>
</tbody>
</table>

- Taxane treatment was discontinued in 26.8% (*nab*-P 150 mg/m²), 16.6% (*nab*-P 125 mg/m²), and 13.3% (Pac 80 mg/m²) of patients, respectively.
- Median RTDI of taxane (based on *nab*-P 125 mg/m²) was 108% (10% - 123%) with *nab*-P 150 mg/m², 99% (17%-104%) with *nab*-P125 mg/m², and 100% (0%-136%) with Pac 80 mg/m².

^a^ Based on *nab*-P 125 mg/m².

GeparSepto: nab-Paclitaxel 125 vs 150 mg/m² vs 80 mg/m² Paclitaxel as Neoadjuvant Treatment in Early Breast Cancer

Time to Resolution of Peripheral Sensory Neuropathy

- Median time to resolve peripheral sensory neuropathy from grade 2 - 4 to grade ≤ 1
 - *nab-P* 125 mg/m²: 6 weeks; *nab-P* 150 mg/m²: 12.4 weeks
 - Median time to resolve from grade 3 - 4 to grade ≤ 1 was 17 and 20 weeks, respectively

Comparison of 12 weeks neoadjuvant Nab-Paclitaxel combined with Carboplatinum vs. Gemcitabine in triple-negative breast cancer: WSG-ADAPT TN randomized phase II trial

West German Study Group, Moenchengladbach; Bethesda Hospital, Moenchengladbach; University Hospital Schleswig-Holstein, Camus Lübeck; Institute of Pathology, MHH, Hanover; University Hospital Tübingen, Oncological practice Troisdorf, Clinics Rotkreuz, Munich, Clinics Holweide, Cologne, Marienhospital Witten; Gynecological Practice, Hildesheim, University Hospital, Essen; St. Elisabeth Clinics, Cologne, University Hospital Charite, Berlin, Diakonie Clinics, Hamburg, Clinics Essen-Mitte, Hospital Mutterhaus, Trier; Evangelical Waldkrankenhau, Berlin, St. Antonius Hospital, Eschweiler, Institute of Pathology, Viersen Ludwig Maximilian University Clinics Munich
ADAPT HR-/HER2-:
Trial Design

Standard chemotherapy (4xEC) recommended after surgery / 12-week biopsy (in case of clinical non-pCR)

03.12.2015

This presentation is the intellectual property of the author, Contact them at oleg.gluz@wsz-online.com for permission to reprint and/or distribute.
ADAPT HR-/HER2-:
CONSORT Diagram

N=385 screened

N=336 randomized (ITT)

N=182 randomized
Nab-Pac/Gem

N=180 started Tx

Adverse events n=10 (5.5%)
Progress/relapse n=10 (5.4%)
Pat. decision n=2 (1%)
Other n=2 (1%)

N=158 completed Tx by protocol 87%

N=154 randomized
Nab-Pac/Carbo

N=151 started Tx

Adverse events n=6 (4%)
Progress n=2 (1.3%)
Pat. decision n=1 (0.6%)
Other n=5 (3.2%)

N=140 completed Tx by protocol 91%

This presentation is the intellectual property of the author.
Contact them at oleg.gluz@wsg-online.com for permission to reprint and/or distribute.
ADAPT HR-/-HER2-: Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Nab-Pac/Gem</th>
<th>Nab-Pac/Carbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>182</td>
<td>154</td>
</tr>
<tr>
<td>Age</td>
<td>median (range)</td>
<td>50 (26-75)</td>
</tr>
<tr>
<td>cT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>68 (37.4%)</td>
<td>57 (37%)</td>
</tr>
<tr>
<td>≥2</td>
<td>114 (62.6%)</td>
<td>97 (62.9%)</td>
</tr>
<tr>
<td>cN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>135 (74.2%)</td>
<td>113 (73.4%)</td>
</tr>
<tr>
<td>≥1</td>
<td>47 (25.8%)</td>
<td>41 (26.6%)</td>
</tr>
<tr>
<td>Ki-67</td>
<td>median</td>
<td>75%</td>
</tr>
<tr>
<td>Central grade 3</td>
<td>172 (94.5%)</td>
<td>140 (90.9%)</td>
</tr>
</tbody>
</table>
ADAPT HR-/HER2-:
Safety

- Dose reductions:
 - Nab-Pac/Gem vs. Nab-Pac/Carbo:
 • 20.6% vs. 11.9%
- Patients with SAEs (all grades):
 - Nab-Pac/Gem vs. Nab-Pac/Carbo:
 • 17.2% vs. 10.6%
 - Related to therapy:
 • Nab-Pac/Gem vs. Nab-Pac-Carbo
 • 10.6% vs. 5.3%
 • 96.3% recovered without sequelae
ADAPT HR-/HER2-: Toxicity CTC ≥ grade 3

<table>
<thead>
<tr>
<th></th>
<th>Nab-Pac/Gem</th>
<th>Nab-Pac/Carbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia/decreased neutrophils</td>
<td>15.0%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Infections*</td>
<td>6.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Increased ALT*</td>
<td>11.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Polyneuropathy</td>
<td>0.6%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

03.12.2015 *comparison between arms significant at $\alpha = 5\%$
ADAPT HR-/HER2-: Pathological complete response

<table>
<thead>
<tr>
<th>Group</th>
<th>pCR Rate</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (nab-Pac+Gem)</td>
<td>28.7%</td>
<td>51/178</td>
</tr>
<tr>
<td>B (nab-Pac+Carbo)</td>
<td>45.9%</td>
<td>67/146</td>
</tr>
</tbody>
</table>

p<0.001
ADAPTHR-/HER2-:
pCR by early response

- n=71 (21%) with missing 3-week biopsy
- n=80 (24%) significant necrosis (<500 invasive tumor cells) in 3-week biopsy
- Combination of <500 tumor cells and/or Ki67 decrease ≥30% in 3-week biopsy was identified as an early response criterion

This presentation is the intellectual property of the author. Contact them at oleg.gluz@wsg-online.com for permission to reprint and/or distribute.
ADAPT HR-/HER2-: pCR in study arms by early response

A (nab-Pac+Gem)

- Responders: 13.5%
- Non-Responders: 36.1%
- Value: 10/74

B (nab-Pac+Carbo)

- Responders: 29.5%
- Non-Responders: 52.8%
- Value: 26/72, 13/44, 38/72

This presentation is the intellectual property of the author. Contact them at oleg.gluz@wsongline.com for permission to reprint and/or distribute.
ADAPT HR-/-HER2-:
Conclusions

- Nab-Pac/Carbo is associated with less toxicity and significant superiority to Nab-Pac/Gem in terms of pCR
- Early morphological changes seem to be predictive for pCR, irrespective of treatment arm
- No predictive factors for carboplatin efficacy have been identified so far; further correlative analyses (e.g. subtypes, family history, BRCA1-ness etc.) are ongoing
- Validation of these results in larger studies seems warranted
Checkpoint Inhibitors
The next frontier!
1. Release of cancer antigens
 - Immunogenic cell death
 - Tolerogenic cell death

2. Cancer antigen presentation
 - TNF-α
 - IL-1
 - IFN-α
 - CD40L/CD40
 - CDN
 - ATP
 - HMGB1
 - TLR
 - IL-10
 - IL-4
 - IL-13

3. Priming and activation
 - CD28/B7.1
 - CD137/CD137L
 - OX40/OX40L
 - CD27/CD70
 - HVEM
 - GITR
 - IL-2
 - IL-12
 - CTLA4/B7.1
 - PD-L1/PD-1
 - PD-L1/B7.1
 - Prostaglandins

4. Trafficking of T cells to tumors
 - CX3CL1
 - CXCL9
 - CXCL10
 - CCL5

5. Infiltration of T cells into tumors
 - LFA1/ICAM1
 - Selectins
 - VEGF
 - Endothelin B receptor

6. Recognition of cancer cells by T cells
 - Reduced pMHC on cancer cells

7. Killing of cancer cells
 - IFN-γ
 - T cell granule content
 - PD-L1/PD-1
 - PD-L1/B7.1
 - IDO
 - TGF-β
 - TIM-3/phospholipids
 - LAG-3
 - Arginase
 - MICA/MICB
 - B7-H4
 - BT LA
 - VISTA

Stimulatory factors: Green
Inhibitors: Red
In a state of chronic antigen presentation, such as malignancy, the chronic presence of antigen or pro-inflammatory cytokines (IL-12, IFN gamma, etc) can upregulate PD-1 expression on the T cell; tumor clones can also select for PD-L1 expression. With PD-1-PD-L1 binding, even in the presence of the costimulatory molecule, "peripheral exhaustion" can occur.

PD-L1: programmed death-ligand 1; CD: cluster of differentiation; PD-1: programmed cell death-1; APC: antigen-presenting cells; MHC: major histocompatibility complex; IL: interleukin; IFN gamma: interferon gamma.
Safety and Clinical Activity pf Atezolizumab (anti-PDL1) in Combination with nab-Paclitaxel in Patients with Metastatic Triple-Negative Breast Cancer

Courtesy of Adams et al. SABCS 2015 P2-11-06
Treatment & Biopsy Schedule

- Atezolizumab
- Nab-paclitaxel

Safety Cohort:

Serial Biopsy Cohort:

Red arrow indicates biopsy.
* A second post-dose biopsy was taken in serial biopsy cohort ≈ 4 wk after first dose of atezolizumab.

Courtesy of Adams et al. SABCS 2015 P2-11-06
<table>
<thead>
<tr>
<th>Best Overall Response</th>
<th>1L (n = 9)</th>
<th>2L (n = 8)</th>
<th>3L+ (n = 7)</th>
<th>All Patients N = 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed ORR (95% CI)<sup>a</sup></td>
<td>66.7% (29.9, 92.5)</td>
<td>25% (3.2, 65.1)</td>
<td>28.6% (3.7, 71.0)</td>
<td>41.7% (22.1, 63.4)</td>
</tr>
<tr>
<td>ORR (95% CI)<sup>b</sup></td>
<td>88.9% (51.7, 99.7)</td>
<td>75.0% (34.9, 96.8)</td>
<td>42.9% (9.9, 81.6)</td>
<td>70.8% (48.9, 87.4)</td>
</tr>
<tr>
<td>CR</td>
<td>11.1%</td>
<td>0</td>
<td>0</td>
<td>4.2%</td>
</tr>
<tr>
<td>PR</td>
<td>77.8%</td>
<td>75.0%</td>
<td>42.9%</td>
<td>66.7%</td>
</tr>
<tr>
<td>SD</td>
<td>11.1%</td>
<td>25.0%</td>
<td>28.6%</td>
<td>20.8%</td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
<td>0</td>
<td>28.6%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

^a Confirmed ORR defined as at least 2 consecutive assessments of complete or partial response.

^b Including investigator-assessed unconfirmed responses.
Table 5. Objective Response Rate by PD-L1 Expression Level

<table>
<thead>
<tr>
<th></th>
<th>IC0 (n = 7)</th>
<th>IC1/2/3 (n = 9)</th>
<th>Unknown (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (95% CI)</td>
<td>57.1% (18.4, 90.1)</td>
<td>77.8% (40.0, 97.2)</td>
<td>75% (34.9, 96.8)</td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
<td>0</td>
<td>12.5%</td>
</tr>
<tr>
<td>PR</td>
<td>57.1%</td>
<td>77.8%</td>
<td>62.5%</td>
</tr>
<tr>
<td>SD</td>
<td>42.9%</td>
<td>22.2%</td>
<td>0</td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
<td>0</td>
<td>25%</td>
</tr>
</tbody>
</table>

Including investigator-assessed unconfirmed responses.
Summary

• nab-paclitaxel remains an important agent for treatment of MBC
• nab-paclitaxel may be a preferred taxane in the preoperative setting
• nab-paclitaxel is frequently partnered with new agents (ie CPM) due to its anti-tumor activity and tolerability....and no steroids needed, attractive for immune strategies!